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ABSTRACT
The role of music in games and animation, particularly in dance
content, is essential for creating immersive and entertaining expe-
riences. Although recent studies have made strides in generating
dance music from videos, their practicality in integrating music into
games and animation remains limited. In this context, we present a
method capable of generating plausible dance music from 3D mo-
tion data and genre labels. Our approach leverages a combination of
a UNET-based latent diffusion model and a pre-trained VAE model.
To evaluate the performance of the proposed model, we employ
evaluation metrics to assess various audio properties, including
beat alignment, audio quality, motion-music correlation, and genre
score. The quantitative results show that our approach outperforms
previous methods. Furthermore, we demonstrate that our model
can generate audio that seamlessly fits to in-the-wild motion data.
This capability enables us to create plausible dance music that com-
plements dynamic movements of characters and enhances overall
audiovisual experience in interactive media. Examples from our pro-
posed model are available at this link: https://dmdproject.github.io/.

CCS CONCEPTS
• Computing methodologies→ Learning latent representa-
tions; Motion processing; Supervised learning.
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1 INTRODUCTION
Music plays a vital role in the creation of games and animation.
However, traditional methods of music generation can be cumber-
some for composers, as they need to repeatedly check how the
music synchronizes with the theme or character movements. Re-
cently, the popularity of dance content generation has increased,
leading researchers to explore automated approaches to simplify
music generation [Aggarwal and Parikh 2021; Gan et al. 2020; Zhu
et al. 2022a,b]. While these studies have made significant strides in
automating music generation using video data, their applications
may be limited when it comes to seamlessly integrating music with
games or animation, as the music should be synchronized with
the characters’ movements. To address this limitation, this work
presents a method to generate music from 3D motion data. This
approach not only assists composers in creating music but also
benefits indie developers or animators without a music background,
allowing them to produce content without copyright music con-
cerns. Furthermore, dance performance directors can express their
creativity by generating new music.

The proposed method is a motion to dance music generation
model capable of producing plausible dance music from 3D motion
data and genre labels. Our method generates music with a timbre
that encapsulates the dance’smood, while seamlessly synchronizing
it with the accompanying 3D motion. It utilizes a latent diffusion-
based architecture paired with a pre-trained VAE model. The key
contributions of this work include:

• We are the first to propose a method to generate dance music
from 3D human motion data and a music genre condition.

• Showcasing the versatility of our model, we demonstrate its
capability to generate music from in-the-wild motion data.

• Through an in-depth analysis of metrics from prior dance
and music generation research, we propose how to evaluate
the generated music with 3D motion data and genre labels.

2 RELATEDWORK
Music generation has become increasingly popular in recent years.
To address computational complexity when the model is condi-
tioned on video and motion data, previous work focuses on sym-
bolic generation, involving formats such as notes [Aggarwal and
Parikh 2021] and MIDI [Gan et al. 2020]. However, these symbolic
representations have limitations in capturing musical properties
(e.g. dynamics and timbre) and can only generate monophonic
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music. Considering that current trend in music generation is di-
rectly generating audible sound using better representations such
as spectrograms [Huang et al. 2023; Luo et al. 2023] or raw audio
waveforms [Dhariwal et al. 2020; Zhu et al. 2022a,b], we build upon
recent work that utilizes mel-spectrograms as the audio represen-
tation for generating polyphonic music.

Generative models, such as GANs and diffusion models, have en-
abled cross-modal generation, leading to more flexible and creative
music than traditional methods. These models are typically con-
ditioned with text or image inputs [Agostinelli et al. 2023; Huang
et al. 2023]. For dance music, video data has been employed to con-
dition these models [Aggarwal and Parikh 2021; Zhu et al. 2022a,b].
However, application of these approaches may be limited when inte-
grating music into games or animations where computer graphics
is engaged. Therefore, this research aims to explore a novel ap-
proach, conditioning a latent diffusion model with 3D motion data
information, to generate dance music that seamlessly fits into inter-
active environments like games and animations. We additionally
conditioned the model with music genre as a high-level control.

3 METHOD
An overview of the architecture is shown in Figure 1. Our approach
employs a latent diffusion model paired with a pre-trained Varia-
tional AutoEncoder (VAE) model which is conditioned with motion
and genre labels.

3.1 Audio Representation
Following recent work on audio-level music generation [Huang
et al. 2023; Luo et al. 2023], we represent audio data with mel-
spectrogram which is denoted as x in Figure 1. We computed mel-
spectrograms with a sampling rate of 22,050Hz, a Hann window
of 2048 samples, a hop length of 512 samples, and 256 mel bins.
The mel-spectrograms are then passed through a Variational Au-
toEncoder (VAE) [Kingma and Welling 2022]. The VAE model is
composed of two main components: an encoder E, which takes the
mel-spectrogram x as input and generates a compressed latent code
z, and a decoder D, which reconstructs the mel-spectrogram from
the compressed latent representation z. This process allows us to
efficiently encode and decode the audio data while preserving its
essential characteristics.

3.2 Conditioning Mechanism
Themotion data is represented as a sequence of poses in the 24-joint
SMPL format for each frame 𝑖 [Loper et al. 2015; Tseng et al. 2022].
We define our motion featuresm as the set ofm𝑖 = {𝑝𝑖 , 𝑞𝑖 , ¤𝑝𝑖 , ¤𝑞𝑖 }
where 𝑝𝑖 , 𝑞𝑖 , ¤𝑝𝑖 , and ¤𝑞𝑖 stands for the position, orientation, linear
velocity, and angular velocity, respectively. The inclusion of ¤𝑝𝑖 and
¤𝑞𝑖 is driven by the motivation to comprehensively represent the
diverse and dynamic nature of dance motions. The position 𝑝𝑖 and
linear velocity ¤𝑝𝑖 are described using the global coordinates, while
the orientation 𝑞𝑖 and angular velocity ¤𝑞𝑖 are defined with respect
to their parent joint axes. To ensure continuity in the representa-
tion, the orientation is converted into 6D representations [Zhou
et al. 2019]. The genre features g are defined as the genre labels cor-
responding to the dance motion. The genre labels are then one-hot
encoded and concatenated with the motion featuresm, resulting in

the conditioning signal c = m
⊕

g. This combined embedding is
used as the condition to the diffusion model to process and analyze
the motion with respect to their genre labels. The conditioning
signal is then mapped to the intermediate layers of the denoising
network via cross-attention layers [Rombach et al. 2021].

3.3 Latent Diffusion Model
With the emergence of latent diffusion models as the state-of-the-
art approach for image [Rombach et al. 2021] and music generation
[Huang et al. 2023; Luo et al. 2023], this work is built upon this
model to explore its potential in generating music with motion
data. With a pre-trained VAE which is frozen during training, the
input audio mel-spectrogram x is encoded to z in a latent space Z
effectively compressing the learning into a lower-dimensional space,
thereby increasing training efficiency. Diffusion models typically
follow a Markov noising process, {𝑧𝑡 }𝑇𝑡=0, where 𝑧0 is drawn from
the data distribution and the forward process is defined as

𝑞(𝑧𝑡 |𝑧𝑡−1) = N(√𝛼𝑡𝑧𝑡−1, (1 − 𝛼𝑡 )𝐼 ) (1)
where 𝛼𝑡 ∈ (0, 1) is a sampling hyper-parameter [Ho et al. 2020].
Subsequently, we introduce the conditioning signal c by approxi-
mating the distribution 𝑝 (𝑧0 |c) through a reverse diffusion process
using a neural network. Following the studies on latent diffusion
models, we employ a UNET-based model [Huang et al. 2023; Rom-
bach et al. 2021] as our denoising network 𝜖𝜃 for every time step 𝑡
and its objective function is defined as

L𝑠𝑖𝑚𝑝𝑙𝑒 = | |𝜖 − 𝜖𝜃 (𝑧𝑡 , 𝑡, c) | |22 (2)
where 𝜖 ∼ N(0, 1) [Ho et al. 2020]. The denoised output is then
decoded by the pre-trained VAE to reconstruct the mel-spectrogram.
After generating the mel-spectrogram, we utilized the Griffin-Lim
algorithm to reconstruct the corresponding audio waveform [McFee
et al. 2015; Perraudin et al. 2013]. No post-processing effects, such
as noise filtering, were applied in this study. The only modification
made to the output was applying gain to match the loudness of the
audio with the ground truth.

4 EXPERIMENTS
4.1 Dataset
We used the AIST++ dataset [Li et al. 2021] which includes paired
music and motion data. The dataset contains 1,020 3D motion data
represented with the SMPL format. Additionally, the music data
comprises of 60 songs with 10 genres, resulting in a total duration
of 18,694 seconds. We extracted 5-second slices from the dataset,
following a similar approach to previous research on music-to-
dance [Li et al. 2021; Tseng et al. 2022].

4.2 Implementation Details
For the audio encoder and decoder, we used a pre-trained VAE
from Hugging Face. This pre-trained VAE was trained on 20,000
mel-spectrograms of 5-second samples of music from a random
Spotify playlist [Smith 2022]. The denoising UNET architecture
consists of 3 down-sampling and up-sampling ResNet blocks with
cross-attention layers and skip connections. The latent diffusion
model was trained with AdamW optimizer [Loshchilov and Hutter
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Figure 1: Overview of the proposed method.

2019] with a learning rate of 1e-4 and the batch size was set to 8.
The number of diffusion steps during training was 1000 while 50
was set during inference. The model was trained for 100 epochs on
a NVIDIA RTX A5000 GPU for 1 day.

4.3 Evaluation Metrics
Since we are the first to leverage 3D motion data and genre for
dance music generation, we formulate a comprehensive evaluation
protocol inspired by prior research in dance motion and music
generation. The evaluation incorporates several key metrics: beats
coverage score, beats hit score, Frechet Audio Distance (FAD), beat
alignment score, and genre Kullback Leibler Divergence (KLD)
score. First, we employ the beats coverage score and beats hit score,
metrics derived from video-to-dance music research [Zhu et al.
2022a,b]. These metrics are primarily concerned with the accuracy
of beat representation in the generated music. The beats coverage
score calculates the ratio of the overall generated beats to the total
musical beats of the ground truth, while the beat hit score measures
the ratio of the aligned generated beats to the total musical beats
of the ground truth [Zhu et al. 2022a].

We then leverage the widely used FAD from text-to-music re-
search [Agostinelli et al. 2023]. FAD evaluates audio quality by
measuring the similarity between the generated audio and the
ground truth. Lower FAD values indicate more plausible audio. To
calculate the FAD score, we utilized a VGGish audio embedding
model pre-trained on the YouTube-8M audio event dataset [Abu-
El-Haija et al. 2016; Agostinelli et al. 2023; Hershey et al. 2016].
The beat alignment score, derived from music-to-dance research
[Li et al. 2021; Siyao et al. 2022], is employed to assess motion-
music correlation. This score quantifies the relationship between
motion and music by computing the average distance between each
kinematic beat (determined from the local minima of the kinetic
velocity) and the nearest music beat (extracted using the Librosa
library [McFee et al. 2015]). Furthermore, we introduce a novel
metric, the genre KLD score, to assess the genre representation of
the generated music. This score measures the distance between
the predicted class probabilities of the generated music and the
ground truth genre labels. For this evaluation, we used a pretrained
genre classifier, MS-SincResNet [Chang et al. 2021], which more
accurately reflects the genre representations of music compared
to classifiers trained on audio event detection datasets [Zhu et al.
2022a,b].

5 RESULTS AND DISCUSSION
5.1 Quantitative Evaluation
The quantitative evaluations are shown in Table 1, in which we
compare our method to the ground truth data from the AIST++
dataset [Li et al. 2021] and the output of the CDCD model [Zhu
et al. 2022b] which uses video and genre as their conditioning signal.
Our model achieved better scores for all the metrics than the CDCD
model, a state-of-the-art video to dance music generation research.
Because we are the first to implement a model that generates dance
music from genre and 3D motion data only comparing our work to
models dealing with video as input data might not be entirely fair.

To address this, we conducted a Mean Opinion Score (MOS) test
as our subjective evaluation, comparing our results to the ground
truth and a baseline method, in which we randomly paired ground
truth music with dance motion. The MOS test involved 20 partici-
pants who evaluated 15 songs, 5 songs from each method, in two
categories: audio quality and motion correlation. The participants
rated the songs using a 5-step Likert scale, ranging from “Poor” to
“Excellent.” The results of the subjective evaluation are shown in
Table 2, which indicates that our method has a better performance
in terms of the motion correlation; however, the audio quality of
our method still falls short when compared to the ground truth.

5.2 Qualitative Results
The qualitative results of our method can be seen in this link: https:
//dmdproject.github.io/. The examples show that our model can
generate plausible dance music given the 3D motion data and genre
label. Our model also exhibits the ability to generate music with
the same motion data but with different genres, showcasing its
versatility. Furthermore, our model can generate plausible beat-
aligned dance music even when using in-the-wild motion data. This
aspect highlights the robustness of our approach and its potential
to handle diverse and real-world motion data.

5.3 Limitations
Our current model faces difficulties in generating a diverse range
of dance music, primarily due to the constrained size of the paired
music and motion dataset, which comprises only 60 songs paired
with 369 choreographies from the AIST++ dataset [Li et al. 2021]. To
tackle this limitation, one potential solution is to build a more exten-
sive paired motion-music dataset by extracting data from YouTube
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Table 1: Model Evaluation for AIST++ Dataset.

Model Beats Coverage Score ↑ Beats Hit Score ↑ Frechet Audio Distance ↓ Beat Align Score ↑ Genre KLD ↓
Ground Truth 100 100 -4.47e-13 0.211 0
CDCD [Zhu et al. 2022b] 78.5 74.8 9.07 0.202 0.612
Ours 93.5 86.0 4.96 0.212 0.604

Table 2: Subjective Evaluation.

Model MOS (Audio Quality) ↑ MOS (Motion Corr.) ↑
Ground Truth 4.52 4.10
Random GT 4.33 3.13
Ours 3.26 3.51

videos. Another issue with our model is its inability to generate
plausible vocals. To address this concern, incorporating a vocoder
into the output generation process could prove beneficial, as it may
help improving the quality and realism of the generated music.
The current method has another drawback of inability to gener-
ate relatively long sequences. While the model performs well in
generating plausible 5-second audio samples when provided with a
5-second input, extending the output to longer sequences results in
a decrease in audio quality. To tackle this challenge, exploring other
denoising architectures such as transformers could be a promising
direction, as they may offer better capabilities for generating longer
and high-quality audio sequences.

6 CONCLUSION AND FUTUREWORK
We introduced a latent diffusion model that effectively generates
realistic dance music from 3D motion data and genre labels. Our
model was comprehensively evaluated using various quantitative
metrics, including rhythm, audio quality, motion-music correlation,
and genre scores. The results show that the model is capable of
producing beat-aligned music across different genres and in the
presence of in-the-wild motion data.

Future research may delve into enhancing the model’s capacity
to generate longer than 5-second input music sequences. One poten-
tial avenue of exploration involves leveraging pre-trained motion
embeddings, which would make the model not rely on handcrafted
motion features, potentially leading to improved performance. Fur-
thermore, expanding the model’s cross-modality capabilities by
incorporating other conditions such as free text, could open up new
exciting research directions. Such enhancements could enable the
model to generate more diverse music with improved versatility.
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